Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations
نویسندگان
چکیده
We establish the existence of a weak solutions for a coupled system of kinetic and fluid equations. More precisely, we consider a Vlasov-FokkerPlanck equation coupled to compressible Navier-Stokes equation via a drag force. The fluid is assumed to be barotropic with γ-pressure law (γ > 3/2). The existence of weak solutions is proved in a bounded domain of R with homogeneous Dirichlet conditions on the fluid velocity field and Dirichlet or reflection boundary conditions on the kinetic distribution function.
منابع مشابه
Global existence of weak and classical solutions for the Navier–Stokes–Vlasov–Fokker–Planck equations
a r t i c l e i n f o a b s t r a c t We consider a system coupling the incompressible Navier–Stokes equations to the Vlasov–Fokker–Planck equation. The coupling arises from a drag force exerted by each other. We establish existence of global weak solutions for the system in two and three dimensions. Furthermore, we obtain the existence and uniqueness result of global smooth solutions for dimen...
متن کاملExistence of Global Weak Solutions to Fokker–planck and Navier–stokes–fokker–planck Equations in Kinetic Models of Dilute Polymers
This survey paper reviews recent developments concerning the existence of global weak solutions to Fokker–Planck equations with unbounded drift terms, and coupled Navier–Stokes–Fokker–Planck systems of partial differential equations, that arise in finitely extensible nonlinear elastic (FENE) type kinetic models of incompressible dilute polymeric fluids in the case of general noncorotational flow.
متن کاملThe Navier-Stokes-Vlasov-Fokker-Planck System near Equilibrium
This paper is concerned with a system that couples the incompressible Navier-Stokes equations to the Vlasov-Fokker-Planck equation. Such a system arises in the modeling of sprays, where a dense phase interacts with a disperse phase. The coupling arises from the Stokes drag force exerted by a phase on the other. We study the global-in-time existence of classical solutions for data close to an eq...
متن کاملGlobal regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations
We provide a proof of global regularity of solutions of coupled Navier-Stokes equations and Fokker-Planck equations, in two spatial dimensions, in the absence of boundaries. The proof yields a priori estimates for the growth of spatial gradients. 1991 Mathematical subject classification (Amer. Math. Soc.): 35K, 35Q30, 82C31, 76A05.
متن کاملExistence of Global Weak Solutions to Coupled Navier–stokes–fokker–planck Systems: a Brief Survey
We present a brief survey of recent results concerning the existence of global-in-time weak solutions in a bounded Lipschitz domain in R, d ∈ {2, 3}, to a class of kinetic models for dilute polymeric liquids with noninteracting polymer chains. The mathematical model is a coupled Navier–Stokes–Fokker–Planck system. The velocity and the pressure of the fluid satisfy a Navier–Stokes-like system of...
متن کامل